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Abstract

We present a knowledge-based function to score protein decoys based on their similarity to

native structure. A set of features is constructed to describe the structure and sequence of the

entire protein chain. Furthermore, a qualitative relationship is established between the calculated

features and the underlying electromagnetic interaction that dominates this scale. The features we

use are associated with residue-residue distances, residue-solvent distances, pairwise knowledge-

based potentials and a four-body potential. In addition we introduce a new target to be predicted,

the fitness score, which measures the similarity of a model to the native structure. This new

approach enables us to obtain information both from decoys and from native structures. It is

also devoid of previous problems associated with knowledge-based potentials. These features were

obtained for a large set of native and decoy structures and a back-propagating neural network

was trained to predict the fitness score. Overall this new scoring potential proved to be superior

to the knowledge-based scoring functions used as its inputs. In particular, in the latest CASP

(CASP10) experiment our method was ranked third for all targets, and second for freely-modeled

hard targets among about 200 groups for the top model predictions. Ours was the only method

ranked in the top three for all targets and for hard targets. This shows that initial results from

the novel approach are able to capture details that were missed by a broad spectrum of protein

structure prediction approaches. Source codes and executable from this work are freely available

at http://mathmed.org and http://mamiris.com/.
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I. INTRODUCTION

Protein structure mediates the interactions that govern life. In general, protein tertiary

structure prediction involves generating candidate structures (predicted models) and picking

the closest to native among them. Various approaches have been designed to this selection

problem with the ultimate goal of improving structure prediction. Since it is usually assumed

that the native structure has the lowest energy scoring functions are commonly called po-

tentials. They enable to distinguish between physically stable and unstable configurations of

proteins and their partners and have numerous applications in medicine, biology, chemistry,

and physics.

In general, a protein is a directed polypeptide chain of the 20 naturally occurring amino-

acids. Critically, in-vivo it is immersed in a solution (water), or is influenced by other forms

of boundary conditions. It is also well established that modification of these boundary con-

ditions by changing the solution or its properties may involve a change in protein structure,

dynamics and function. Hence, it is reasonable to assume that boundary effects will be

critical in determining protein structure.

Four interactions are presently known to account for the observable universe. Out of

these interactions three are out of range. The strong and weak nuclear forces deal with

events on the subatomic scale and gravitation deals with events on, mostly, the extra-

planetary scale. Thus, one interaction, electromagnetism, is left to account for much of

the world as we know it, especially for the processes associated with biological systems.

This electromagnetic interaction can be calculated in practice either by truncated multi-

pole expansion or by numerical simulation of the discrete charge density. However, because

of the amount of interactions in a given protein and the amounts of proteins to study, such

fine detail calculations are very limited in scope. Instead a simplified representation of the

system is utilized when designing a potential function. The aim of such functions is two

fold: to determine the dynamics of proteins in molecular simulations, and to discriminate

between decoys of native protein structures.

Two partly successful approaches to designing such a potential function have been re-

ported. The so called physics-based potentials are based on some physical knowledge of the

configuration of the system. Because of general structural features of the peptide chain, at

the atomic level interactions are modeled as a force-field that contains additive contributions
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from spring-like potentials around equilibrium positions of bonds and angles, dihedral poten-

tials, electrostatic and van der Waals potentials, and hydrogen bonds that effect propensity

towards secondary structure formation [1]. Approaches that coarse grain the atomic model

also exist, for example MARTINI [2, 3], UNRES [4–6], MSCG [7, 8], and others [9].

For protein systems such approaches can provide a description of protein dynamics on a

wide range of time scales [1]. There are two problems though. Even at this level of simpli-

fication such simulations are prohibitive in terms of the computational time requirements.

More importantly, while such simulations have been successful for various problems of pro-

tein dynamics, it has not been established that they can generally fold proteins starting

from an arbitrary initial conformation, nor keep them in their naturally occurring states.

The other approach, termed knowledge based potentials, are generally based on some

phenomenological learning using known biological structural and evolutionary data. That

is, information existent in current databases is used to train a potential function. Sometimes

an additional simplification is used. Instead of a fully atomic representation of amino acids

a coarse-grained representation is used, where each residue is represented by one or more

points. For example by the positions of the Cα atom, the Cβ atom, and the center of the

side chain. In this work, we dress a knowledge-based scoring function with a little physics

and use a machine learner to optimize it.

Critically important for any machine learning is the presentation of the data in a machine

usable form. We shall discuss later how we do this using general features of electromagnetic

potentials.

The central theme of protein knowledge based potentials has been to assume the existence

of functions f(A,B) for interactions between residue types A and B such that the potential

energy of a protein is the sum over all pairs. Furthermore, the Boltzmann distribution was

assumed to describe the relation between the energy of interactions of pairs of residues A and

B and probabilities of finding them being in contact in structural databases [10–12] and this

was used to parameterize pairwise scoring functions. However, it has been already shown

that the pairwise potentials approach was less than satisfactory, to describe proteins due to

the dense packing of residues in protein cores [13–16]. The unsatisfactory nature of two-

body parameterization of the energy potentials is also demonstrated by improvements due

to addition of multi-body potentials [11, 17–20]. In simple terms, the two body approach is

unsatisfactory because the abundance of a particular pair of residues at a given distance may
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be determined by other residues in the protein and does not necessarily reflect any phys-

ical interaction between that particular pair of residues. Knowledge based potentials are

also sometimes criticized [16] because of sampling across many proteins without imposing a

standard environment. We suggest that sampling across many different sequences (proteins)

to derive potential energy is preferable over sampling over a single sequence. On the other

hand the non-standard environment in protein structure determination is of serious debil-

itating nature. Nevertheless we have to use information that is currently available hoping

that in the future a standardized approach or at least the reporting of the environment will

be established. Despite these misgivings numerous successes of knowledge based potentials

suggest that the effect of a non-constant environment does not impair their usefulness.

As suggested recently [16, 21] knowledge based potentials can be rendered physically

meaningful under certain conditions. Critically it is the account of many-body effects that

proves most beneficial [16]. Here we shall start from the basic ideas and progressively build

upon them. The proper phrasing of the Boltzmann criterion here is that for a sample of

protein states, the probability of any given configuration is asymptotically proportional to

the relative amount of the configuration in the sampled states. And, that the energy dif-

ference between two states can be obtained by taking the logarithm of the ratio between

the probabilities of being in these states. The key issue to realize is that these probabil-

ities are dependent on a collection of interactions across the entire protein chain. Hence,

knowledge-based potentials that take into account a bigger part of the protein will be better

at capturing the physics of the problem. Methods that take into account the whole protein

will be best. These global considerations are necessary to derive potential energies in a

meaningful way.

II. MATERIALS AND METHODS

How do we model interactions on the entire protein scale? One possible way is to use

global features. That is, use features that are calculated over the whole protein. For this we

need to sum or integrate over many interactions. As argued at the outset, electromagnetism

governs the phenomena on this scale. Thus, the terms appearing in such a sum would

be proportional to inverse distances, their cubes and so forth with increasing odd integers

describing higher moments. Furthermore, we can assume that the terms appearing in the
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sum would contain parameters dependent on the types of residue pairs and possibly their

environment. These parameters can depend, for example, on the charge and electric dipole

moment of the residues, etc. Hence, we can imagine that if we take as features such partial

sums, partitioned for example by pair types, we can use a machine learner to approximate

the unknown parameters, which are generally dependent on the physical characteristics of

the system.

In Table I we give the protein descriptive features used as inputs. res2res refers to the

partial energy sums between pairs of residues A and B. We distinguish between interaction

AB and BA depending on their order in the sequence. For a given pair of types A and

B, we consider interactions as ...A...B..., with ”...” referring to any or no point along the

sequence. For a given protein we denote by NAB the number of such interactions and let

diAB, i = 1, .., NAB, denote the distances between the Cα of these residue pairs. We collect

the terms
∑

i(d
i
AB))

−1 and
∑

i(d
i
AB))

−3 normalized by the cube root of the length of the

sequence of the protein. We also collect NAB, normalized by the length. A final z-score

normalization was applied to all features. This means that for a given feature (partial sum)

we subtract the average over all proteins in our PDB dataset (discussed below) and divide

by the standard deviation over that set. One extra residue type was used for all unknown

types. In total there are 3 ∗ 21 ∗ 21 = 1323 features for this feature type. A possible

improvement would be to use the same approach but with atom types instead of residue

types. Additionally, including the minimum distance between residue/atom types across the

protein, defined as the distance between the closest two atoms for residues, can result in an

improved assessment of the similarity of a given structure to the native one associated with

that sequence.

So far we have considered residue-residue interactions, typ233w.norm contains informa-

tion about the distance of individual atoms to the solvent. This depth is a critical piece of

information since much of the nature of proteins is an outcome of interactions associated

with the solvent. We distinguish between atoms associated with different residue types and

calculate as before the partial sums with respect to the inverse distance and its cube. We

use a total of 233 heavy atom-residue types with 234th reserved for unknown atoms. We

have used a recursive program through PDB files to come up with this list of types, allowing

new types to be defined on the fly when first encountered in a PDB file. The list of types

accompanies this publication as the supplementary file ‘aa.atom.types.233’. In essence this
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allows us to avoid placing entries with an ‘unknown’ attribute. We use a stand alone version

of the DEPTH program [22] to calculate the distance to the solvent. Distances are defined

by the shortest paths to a water molecule in a solvated protein. In this case, for each atom-

residue distance partial sum (feature) we also calculate the average standard deviation of

the distances to the solvent appearing in the sum for that feature. All these quantities were

normalized as before. A significant improvement to this feature would result from collecting

distances into several bins and assigning separate sums in each individual bin to separate

features.

In addition to these global input features we also use three global features that are

publicly available and are easy to use. 4bod, dfire2, and rwplus refer to the four-body [23–

25], DFIRE2 [10, 11], and RWPlus [12] potentials respectively. While 4bod is designed

to capture some multi-body effects, DFIRE2 and RWPlus are two-body knowledge-based

potentials. They are used here though parameterized only for entire proteins. Hence they

can be viewed as capturing global information regarding the two-body decomposition of a

protein. For these potentials we calculate the z-score of their raw values. We also normalize

the raw values by the length of the protein and calculate that z-score and the normalized

value scaled to be in the [−1, 1] region. For the four-body potential we also use the number

of atoms for normalization.

These are the global features we chose to describe the protein. We are now faced with

determining the parameters associated with each of our features. We could, and it might

be an interesting study, reduce the amount of our global features and try to ascertain some

parameterization of them through statistical analysis of currently available protein struc-

tures. Unfortunately, using such global features would reduce the amount of information to

parameterize the potential. Nevertheless initial testing of these ideas were performed first,

by using simple additive non-weighted parameterization which gave a robust signal. This

was followed by training the neural network on a subset of the PDB [26] with a sequence of

more than 20 residues (29381 structures), assigning the target value of the protein poten-

tial to be -1 for representing the native structure. These first simple steps showed enough

promise to continue this study further.

At this point it is instructive to consider what we would like to get. Our main aim is to

develop a scoring function that for given protein sequence and given set of structural models

of protein, will score them according to their similarity to the native structure associated
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with the given sequence. For this purpose it is just as important to parameterize the scoring

function on non-native models. If we do this we obtain a new dimension which we can use

to greatly expand our statistics. This is the innovative approach we have taken.

For a given non-native structure we calculate the structural similarity of it to the native

structure corresponding to the same sequence. We use the TM-score [27, 28] to measure

similarity between native and model structures (decoys). The TM-score values were renor-

malized to be fitness scores as FS = 2(0.5−TM), with TM denoting the TM-score and FS the

fitness score. This conforms to our previous definition of -1 as the score of a perfect match

to native structure. To obtain as realistic as possible set of protein models we used server

models from the Critical Assessment of protein Structure Prediction (CASP) [29] rounds 5

through 9 (94717 structures) to further train and test our protein potential. Models from

earlier CASPs were discarded because of differences in their cataloging. In addition several

other freely available databases of protein decoys were collected. These include the ModPipe

Decoys [30] (168,632 decoys for 6,877 native protein chain structures) and decoys from De-

coys ‘R’ Us [31] (multiple decoys set). However they were not used in training because of the

abundance of CASP 5 thorough CASP 9 models, and because of computational difficulties

associated with abundance of data and shortage of dedicated resources. The set of CASP

server models was used in combination with the set of native PDB structures mentioned

earlier.

We are now faced with the key issue of the parameterization of the model. A common ap-

proach to parameterization is to multiply each feature by a parameter optimized according to

some criterion. For example, in 2-body knowledge based protein potentials the distribution

of residue pairs in the PDB is used to determine the values of such parameters. Indeed our

initial studies were along those lines. After further thought, our approach evolved around

the model system we just presented including the extra fitness score target. Our hypothesis

was that it may be useful to use the architecture of a neural network to achieve the required

parameterization. If we use the features we described as inputs, then multiplication by a

parameter is the first input layer of the neural network. Model-to-native fitness is used for

training the output layer of the network, and we are guaranteed that we can approximate

any function by virtue of the mathematical nature of a neural network.

A two layer neural network with the input features described above plus an additional bias

neuron was set up for this problem using the package GENN (GEneral Neural Network) [32].
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The first hidden layer had 51 neurons and the second had 31. Each with an additional bias

neuron. The output layer is a single neuron for the protein fitness to native score (FS).

In this way the input is the protein sequence and model structure, as given for example in

a PDB format, and the output is a measure for the similarity of the protein to a native

structure, or, in the case of multi-structured proteins, to the first realization reported in

the PDB. As mentioned previously once we include non-native models there is boundless

statistics and certainly more than computational resources at our disposal can handle. We

found that about thirty thousand structures is all we can do in one batch and we average

over several training realizations with different initial conditions. For each we randomize the

list of proteins and select 30% to compose the over-fit-protection set while the remaining

70% is used for on-line training. Over-fit testing is done after each training epoch. For

testing purposes the newer CASP results are excluded as will be described below.

III. RESULTS

Performance of the methods described are analyzed in two ways using data from the last

two CASP experiments. We note that our choice of CASP as a testing ground was due

to it being a well-established and natural form of analysis of progress in development of

protein structure prediction methodologies. Hence our testing procedure closely resembles

a real scenario. For the first test (Test 1), models up to CASP7 were used for training

and over-fit protection. These are all model up to and including CASP ID T0386, a total

of 38254 models. The rest of available CASP models (CASP8 and CASP9 56463 models)

are used as an independent test set. For the second test (Test 2), all models up to CASP8

(T0129-T0514, 65509 models) were used for the training and over-fit protection sets. In this

case the 29208 models of CASP9 were used for testing. In our first round of developing the

server native chain structures as given by CASP were also used in training. We term this

server Seder1. We soon discovered that this may be a liability for the CASP experiment since

the networks seemed to work better for native structures but were less successful in ranking

non-native models. To overcome this liability a second round of training was performed

with only predicted server models. In the second round the initial conditions of the neural

network weights were taken as the optimized weights of the first round. We term this server

Seder2.
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In Tables II and III we give the results we got from these tests. Test 1 and 2 refer to

previously described cases. All scores are calculated for each CASP target separately and

then averaged over all targets in the test set. Here we use the following accuracy parameters.

The correlation between fitness score and potential score is a measure of the accuracy for

a range of structure realizations and should equal 1.0 for a perfect prediction according to

our criteria. Another measure of accuracy is ability to pick structures most resembling the

native structure when ranked according to the predicted protein potential. In this respect

we report the average TM-score for the top 1 and the top 5 structures, and the average

ranking position of the structure most closely resembling the native one. When ranking we

distinguish between cases where a native structure is or is not included in the structures

to be ranked. We also give the results using the values of the external scoring potentials

for comparison. We see that there is very little difference between DFire2 and RWplus,

except that RWplus seems to rank better. In our testing the 4body potential produced

worse correlation but ranked higher the native structure. This did not translate however

to a better TM-score for the top 1 or top 5 models. Overall Seder1 and Seder2 got better

results than all external models across all accuracy parameters. Most significantly Seder

improved the average TM-score of the top 1 structure by about 10% and significantly more

if native structures are in the models set.

IV. DISCUSSION

We also analyze the prediction accuracy that can be derived from each feature type sep-

arately. We do this for the human targets (all groups) of the CASP10 dataset of submitted

server predictions. This resembles the hardest part of a realistic test of protein structure

prediction. All training on the weights presented here was done before the CASP10 ex-

periment begun. To test the contribution from each input feature we turn it off (zero its

values), predict, and test the accuracy using correlations and mean absolute error (MAE) in

percent. In Table IV we give these accuracy parameters in each case removing the specified

input feature. This means that the worse the results the more important is the contribution

to the prediction from the removed feature. We see that by far the most significant input

feature is the typ233w which describes the distance of the residues to the surface (or the

solvent). Removing this feature results in about a 50% drop in correlation and an increase of
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almost 100% in MAE. The next input feature is res2res which describes the distance between

residues. Removing this feature results in a decrease of about 10% in the correlations. In

an interesting twist, removing res2res results in the lowest MAE. We note however that our

final aim is to compare different structures and while the MAE accounts for the accuracy of

individual predictions the correlations is better suited to evaluate the relationships between

different predictions. This observation deserves further study. The three last features, which

are various other protein scoring functions, contribute each a few percent to the accuracy.

Overall we find that not including natives in the training set produces better results when

considering predictions for models only (Seder2 versus Seder1).

We had an opportunity to test blindly the performance of the method presented here

in the CASP10 [29] experiment as the ”Kloczkowski Lab” group. For each target, the set

of top 150 server models was downloaded from the CASP server, run through Seder2 for a

predicted fitness score and ranked accordingly. No human intervention was carried out. Top

five models were submitted in order, but since our methodology was developed specifically

for the recognition of the best model, our approach excelled in top model (Model 1) category.

The official group performance ranking over all targets [33] show that the method presented

above was ranked third, with only the Zhang group and Zhang server ranked higher. The

Zhang group of the University of Michigan is currently the leading group in protein structure

prediction having won several recent CASPs, hence it is encouraging that our initial approach

did so well.

For many proteins in the CASP experiment significantly close homologs with solved struc-

ture can be found and building structural models for these cases is relatively easier. Those

proteins with no structurally resolved sequentially similar proteins are generally known as

hard targets. For those hard targets the Kloczkowski Lab ranked second in the official

ranking [33]. The top group in this category was ProQ2 group, however ProQ2 ranked

eighth for all models. Other state-of-the-art quality assessment methods and best human

predictors with their official rankings in CASP10 for (all models/hard models) are: ProQ2

(8/1), ProQ2clust (30/39), Zhang (1/4), keasar (3/17), Pcomb (5/6), Pcons (6/10), BAKER

(14/37), MULTICOM (4/11), Mufold (12/49). Under this convention our method ranked

as (3/2) and we find it highly promising that our automated approach was the only one to

be highly ranked for both hard and all targets and was successful even against top human

prediction groups in template-based and free modeling categories.
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V. CONCLUSIONS

We have presented a new approach for designing a function to discriminate between

protein decoys based on their fitness to native structure. At its base this discrimination is

based on a set of input features that are used to describe the structure and the sequence of

the protein chain. For the current work these are associated with residue-solvent distances

(residue depth), residue-residue distances, pairwise knowledge potentials and a four-body

potential. We found that the distances between the residue delineated atoms of the protein

and the solvent is the most important input feature. These features were calculated for a

large set of both native and decoy structures and a back-propagating neural network was

used to train for predicting the fitness score of a model to the native structure. Overall

this new scoring potential proved to be superior to the knowledge based scoring functions

used as its inputs and was also ranked among the top performing groups in the recent

CASP10 experiment. Possible improvements of the scoring function presented here include

refinement to atom types in residue-residue interactions and refinement of the interactions

based on distance bins. Possible extensions of this work include a protein interface scoring

function for selection of native interfaces of interacting proteins.

One of the interesting possible extensions of this work would be to incorporate other

approaches of protein representations and of cataloging its internal interactions. This may

lead to other physically meaningful partitioning and parameterization of the interactions

and improvements in identification of native structures. In this respect, simplified repre-

sentations of a protein [4–6, 34–43] pose significant promise. Furthermore, a simplification

route can also be taken through re-concentration on the four or so atomic building blocks of

a protein and parameterizing the interactions between them. Such an approach may be most

effective if one does not disregarded the hydrogens, as is sometimes done, for they influence

much of the properties of proteins [44, 45]. Use of evolutionary knowledge and sequence

alignment information [46–48] will also likely contribute due to the strong relationship be-

tween sequence similarity and structure conservation. Probably some combination [49] of all

these approaches will prove superior to any one of them individually for the identification

of naturally occurring protein structures.
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TABLE I: Types of protein features used

Name Description Number of features

res2res Residue type inverse distance between pairs partial sums 3*21*21

typ233w Atom type residue delineated inverse distance to solvent partial sums 4*234

4bod Four body potential [23–25] 5

dfire2 DFire2.0 [10, 11] 3

rwplus RWPlus [12] 3
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TABLE II: Test 1: CASP8 and CASP9 as blind test set

Test 1

Parameter DFire2 RWPlus 4Body Sederw Seder2wo

R1na 76(78) 57(73) 33(47) 29(51) 14(33)

R1nob 60(58) 60(57) 66(55) 63(54) 56(57)

Correlationc 0.54(0.22) 0.56(0.22) 0.44(0.22) 0.51(0.25) 0.83(0.16)

ATM1nd 0.67(0.27) 0.69(0.28) 0.62(0.29) 0.74(0.28) 0.90(0.18)

ATM5ne 0.63(0.26) 0.64(0.26) 0.61(0.27) 0.66(0.26) 0.73(0.23)

ATM1nof 0.60(0.25) 0.60(0.25) 0.57(0.26) 0.60(0.25) 0.67(0.23)

ATM5nog 0.61(0.25) 0.61(0.25) 0.59(0.26) 0.62(0.25) 0.67(0.22)

Training to CASP T0386 testing from CASP T0387. Standard deviation over the tested proteins

is given in parenthesis. aRank of top 1 with native in pool of candidates bRank of top 1 without

native in pool of candidates cPearson correlation between fitness score and predicted values

dAverage TM-score for top 1 model with native in pool of candidates eAverage TM-score for top

5 model with native in pool of candidates fAverage TM-score for top 1 model without native in

pool of candidates gAverage TM-score for top 5 model without native in pool of candidates

wSeder with natives in training set woSeder without natives in training set

19



TABLE III: Test 2: only CASP9 as blind test set

Test 2

Parameter DFire2 RWPlus 4Body Sederw Seder2wo

R1na 91(79) 56(74) 28(37) 25(51) 22(48)

R1nob 57(57) 59(58) 60(51) 62(63) 51(51)

Correlationc 0.52(0.21) 0.52(0.21) 0.39(0.23) 0.57(0.25) 0.83(0.17)

ATM1nd 0.64(0.25) 0.68(0.28) 0.59(0.29) 0.73(0.29) 0.88(0.18)

ATM5ne 0.62(0.24) 0.63(0.25) 0.58(0.27) 0.64(0.26) 0.70(0.25)

ATM1nof 0.61(0.24) 0.61(0.25) 0.54(0.26) 0.58(0.25) 0.65(0.25)

ATM5nog 0.61(0.23) 0.61(0.24) 0.55(0.26) 0.60(0.25) 0.64(0.24)

Training to CASP T0514 testing from CASP T0515. Standard deviation over the tested proteins

is given in parenthesis. aRank of top 1 with native in pool of candidates bRank of top 1 without

native in pool of candidates cPearson correlation between fitness score and predicted values

dAverage TM-score for top 1 model with native in pool of candidates eAverage TM-score for top

5 model with native in pool of candidates fAverage TM-score for top 1 model without native in

pool of candidates gAverage TM-score for top 5 model without native in pool of candidates

wSeder with natives in training set woSeder without natives in training set
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TABLE IV: Prediction accuracy contribution from different inputs

Seder1w Seder2wo

Feature Removed Correlationa MAEb Correlationa MAEb

typ233w 0.305 29.6 0.313 28.1

res2res 0.483 15.0 0.466 15.0

4bod 0.527 18.7 0.542 18.3

dfire2 0.524 18.1 0.540 17.7

rwplus 0.532 17.9 0.547 17.5

All Features 0.546 17.2 0.559 16.8

Effect of eliminating each of the input features on the accuracy of predicting the fitness score.

Note: the worse the results without the feature the more important the feature is. aPearson

correlation between predicted and native fitness score bMAE between predicted and real fitness

score. Reported as percent of the values range. wSeder with natives in training set woSeder

without natives in training set
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